
Recognizing Safety and Liveness

Stefano Pessotto
7 November 2024

University of Udine

Table of contents

1. Introduction

2. Safety

3. Liveness

4. Partitioning Properties

5. Program verification for deterministic properties

1

Model Checking

In the context of model checking we want to show that the system
behaves correctly in every possible scenario.

π |= P

In the general case, the problem is hard and the complexity depends
on the logic we choose to express the properties.

2

Programs

π |= P

Program

π is a program, formally represented in terms of:
• A set of program states Sπ ;
• A set of atomic actions Aπ ;
• A predicate for the initial states Initπ .

3

Programs

• Sπ : The only requirement for Sπ is to be a countable set.
• Aπ : Atomic actions are subsets of Sπ × Sπ .

α =< if b→ C fi >
= {(s, t) ∈ Sπ × Sπ : s |= b ∧ t = C(s)}

α is enabled in s if there exists a state t such that (s, t) ∈ α.
• Initπ : Any state s such that s |= Initπ is a possible initial state.

4

Programs

History

A sequence of states σ = s0s1 . . . is called a history of π when-
ever
• s0 |= Initπ ;
• Every state si+1 is the result of the execution of a single
enabled atomic action from Aπ in si.

Finite executions are extended into infinite ones by repeating the
last occurring state.

5

Properties

π |= P

MP

Properties can be expressed in terms of Büchi AutomatonMP:

π |= P ⇐⇒ ∀σ history of π, σ ∈ L(MP)

The expressiveness of Büchi Automaton is equivalent to ETL.

6

Properties: Total Correctness

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

True

• Pre holds for states satisfying the preconditions;
• Done holds for states in which the program has terminated;
• Post holds for states satisfying the post-conditions.

7

Properties: Starvation Freedom

q0 q1

¬Requestϕ

Requestϕ

¬Servedϕ

Servedϕ

• Requestϕ holds for states in which process ϕ require access to
the critical sections;

• Servedϕ holds for states in which process ϕ enters the critical
section.

8

Property automaton

M(P,π)

A Büchi AutomatonM(P,π) is a quintuple < Sπ,Q,Q0,Q∞, δ >

where
• Sπ is the set of states of the program π;
• Q is the set of automaton states of the propertyMP;
• Q0 ⊆ Q is the set of initial states ofMP;
• Q∞ ⊆ Q is the set of accepting states ofMP;
• δ : (Q× Sπ) → 2Q is the transition function.

9

Property automaton

Given an execution σ of π:

• ΓM(P,π)
(σ): set of all runs ofM(P,π) over σ;

• INFM(P,π)
(σ): set of automaton states that appears infinitely

many times in any element of ΓM(P,π)
(σ);

• σ is accepted if and only if INFM(P,π)
∩ Q∞ ̸= ∅.

10

More Büchi Automaton

Reduced Büchi Automaton

A Büchi Automaton is reduced if and only if there is a path
from every state to an accepting state.

Any Büchi AutomatonM is equivalent to a reduced one, and it can
be obtained by simply removing all states from which non accepting
state is reachable.

11

Closure Automaton

Closure Automaton

The closure automaton cl(M) of the Büchi Automaton M is
the automaton in which every state becomes a final state.

The closure automaton can rejects ω-words only by attempting
undefined transitions.

12

Safety

Safety properties express the fact that ”something bad never
happens”, which means that any violation is irremediable and has a
finite witness.
In the context of automaton, the violation is the attempt to take an
undefined transition:

• It is irremediable: halts the computation;
• It has a finite witness: the prefix up to the time point in which
the undefined transition is taken defines the witness.

13

Safety

Safety

A property P is a safety property if and only if

∀σ ∈ Sωπ(σ |= P ⇐⇒ (∀i ≥ 0 ∃β ∈ Sωπ : σ[. . . i] · β |= P))

The definition is the contrapositive of

∀σ ∈ Sωπ(σ ̸|= P ⇐⇒ (∃i ≥ 0 ∀β ∈ Sωπ : σ[. . . i] · β ̸|= P))

14

Safety

The closure automaton can be used to check whether P is safety,
since it can reject an input only by taking an undefined transition:
whenever L(MP) = L(cl(MP)) holds, we have thatMP rejects input
only by taking undefined transition.

Theorem

A reduced Büchi AutomatonMP specifies a safety property if
and only if

L(MP) = L(cl(MP))

15

Safety

Proof: ⇒
It holds by definition that L(MP) ⊆ L(cl(MP)).
To show that L(cl(MP)) ⊆ L(MP) we apply the definition of safety:
Let α ∈ L(cl(MP)) and i ∈ N

∃β ∈ Sω : α[. . . i] · β ∈ L(MP)

Let qi = δ∗(q0, α[. . . i])

• MP is reduced, so qi precedes an accepting state;
• α ∈ L(cl(MP)), so both cl(MP) andMP do not take an
undefined transition;

so there exists an extension β0 such that δ∗(qi, β0) = qf and qf ∈ Q∞.

16

Safety

Proof: ⇒

. . .

This argument can be iterated to build an infinite suffix
β = β0 · β1 · . . . such that α[. . . i] · β visits at least one accepting state
infinitely often, so α[. . . i] · β ∈ L(MP).
From the facts that

• MP specifies a safety property =⇒ ∀α ∈ L(cl(MP))

(∀i ≥ 0 ∃β ∈ Sω : α[. . . i] · β |= P) ⇒ α |= P

• MP specifies a safety property
• ∀i ≥ 0 ∃β ∈ Sω : α[. . . i] · β ∈ L(MP)

it follows that α |= P, or equivalently α ∈ L(MP).

17

Safety

Proof: ⇐
Assume L(MP) = L(cl(MP)). In order to prove thatMP specifies a
safety property, we will prove

σ ∈ L(MP) ⇐⇒ ∀i ≥ 0 ∃β ∈ Sωσ[. . . i] · β ∈ L(MP)

(=⇒) is trivially satisfied we can choose β = σ[i+ 1 . . .].
We want to prove

∀i ≥ 0 ∃β ∈ Sωσ[. . . i] · β ∈ L(MP) =⇒ σ ∈ L(MP)

equivalent to

σ ̸∈ L(MP) =⇒ ¬(∀i ≥ 0 ∃β ∈ Sω(σ[. . . i]β ∈ L(MP))

σ ̸∈ L(MP) =⇒ (∃i ≥ 0 ∀β ∈ Sω(σ[. . . i] · β ̸∈ L(MP))

18

Safety

. . .

σ ̸∈ L(MP) =⇒ (∃i ≥ 0 ∀β ∈ Sω(σ[. . . i] · β ̸∈ L(MP))

Since L(MP) = L(cl(MP)), we can substitute the two on both sides

σ ̸∈ L(cl(MP)) =⇒ (∃i ≥ 0 ∀β ∈ Sω(σ[. . . i] · β ̸∈ L(cl(MP)))

Let α ̸∈ L(cl(MP)), then α is rejected upon taking an undefined
transition because all states in cl(MP) are finals. Let k be the index
of such transition. It is easy to see that ∀β ∈ Sω

σ[. . . k] · β ̸∈ L(cl(MP))

□

19

Liveness

Liveness properties express the fact that ”something good will
eventually happen”.
In the context of automaton, this can be recognized as the ability to
recover any partial execution and is the opposite of Safety.
Liveness properties do not allow ”bad things” to happen, since they
would be irrecoverable: any violation requires an infinite behavior
and is not detectable by analyzing a finite prefix.

20

Liveness

Liveness

A reduced Büchi AutomatonMP specifies a liveness property
if and only if

∀α ∈ S∗ ∃β ∈ Sω(α · β ∈ L(MP))

Notice that the definition is different from CoSafety, which states that

∀σ ∈ L(MP) ∃i ∈ N ∀β ∈ Sω(σ[. . . i] · β ∈ L(MP))

and requires only finite time to check the satisfaction of an ω-word.

21

Liveness

The closure automaton can be used to check whether a property is
liveness, since it can reject an input only by taking an undefined
transition. For P to be liveness,MP must not take any undefined
transition, which means that the language recognized by the closure
automaton must be Sω .

Theorem

A reduced Büchi AutomatonMP specifies a liveness property
if and only if

L(cl(MP)) = Sω

22

Liveness

Proof: ⇒
AssumeMP specifies a liveness property and α ∈ Sω . We can
instantiate the definition of liveness for any prefix of α:

∀i ≥ 0 ∃β ∈ Sω(α[. . . i] · β ∈ L(MP))

meaning thatMP does not take any undefined transition reading α,
otherwise it would be irrecoverable.
SinceMP and its closure share the same transition function, none of
them take an undefined transition and the closure automaton must
accept α.
This means that ∀α ∈ Sω α ∈ L(cl(MP)) = Sω .

23

Liveness

Proof: ⇐
Assume L(cl(MP)) = Sω and α ∈ Sω . We want to prove thatMP

specifies a liveness property by showing that ∀i ∈ N

∃β ∈ Sω : α[. . . i] · β ∈ L(MP))

Let i ∈ N and qi = δ∗(q0, α[. . . i])

• MP is reduced, so qi precedes an accepting state;
• Since L(cl(MP)) = Sω , cl(MP) does not take any undefined
transition while reading α[. . . i], and the same behavior applies
toMP;

so there exists an extension β0 such that δ∗(qi, β0) = qf and qf ∈ Q∞.

24

Liveness

Proof: ⇐

. . .

This argument can be iterated to build an infinite suffix
β = β0 · β1 · . . . such that α[. . . i] · β visits at least one accepting state
infinitely often, so α[. . . i] · β ∈ L(MP).
It follows that

∃β ∈ Sω : α[. . . i] · β ∈ L(MP)

so the definition of liveness holds.

25

Partitioning Properties

We now want to show that any property P, expressed by an
automatonMP, can be partitioned into two automata such that

• A Büchi Automaton Safe(MP) will specify the safety part of P;
• A Büchi Automaton Live(MP) will specify the liveness part of P;
• P will be described by the intersection of Safe(MP) and
Live(MP).

26

Safe(MP)

The closure automaton can be exploited.

Theorem

Safe(MP) = cl(MP) specifies a safety property.

The proof is trivial since L(cl(MP)) = L(cl(cl(MP))).

Theorem: recall

A reduced Büchi AutomatonMP specifies a safety property if
and only if

L(MP) = L(cl(MP))

27

Live(MP): deterministic

The objective is to construct an automaton such that

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

We need to distinguish the deterministic and non deterministic case.
In the deterministic case

• A new accepting trap state qtrap is added toMP;
• every undefined transition is replaced with a transition into qtrap.

28

Live(MP): deterministic

Lemma

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

Proof: ⊆
Assume α ∈ L(Live(MP)), one of the two cases occurs

• qtrap ∈ INFMP(α), which means thatMP would have taken an
undefined transition while reading α. Since the closure
automaton behaves likeMP,
α ̸∈ L(cl(MP)) ≡ α ∈ Sω − L(cl(MP));

29

Live(MP): deterministic

Lemma

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

Proof: ⊆
Assume α ∈ L(Live(MP)), one of the two cases occurs

• qtrap ̸∈ INFMP(α), which means that another state qf ∈ Q∞

occurs infinitely many times in the computation of Live(MP),
and so it does in the computation ofMP, which means that
α ∈ L(MP).

30

Live(MP): deterministic

q0 q1

qtrap

a
b

a

b

a,b

q0 q1

qtrap

a
b

a

b

a,b

31

Live(MP): deterministic

Lemma

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

Proof: ⊇
Assume α ∈ L(MP) ∪ (Sω − L(cl(MP)))

• if α ∈ L(MP), then α ∈ L(Live(MP)) by construction, since they
are equivalent when no undefined transition is taken;

32

Live(MP): deterministic

Lemma

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

Proof: ⊇
Assume α ∈ L(MP) ∪ (Sω − L(cl(MP)))

• if α ∈ Sω − L(cl(MP)), then α ̸∈ L(cl(MP))

• cl(MP) takes an undefined transition while reading α, and so does
MP;

• That transition is replaced by a transition into qtrap in Live(MP);
• qtrap is an accepting trap state, and will be visited infinitely many
times.

33

Live(MP): non deterministic

The objective is to construct an automaton such that

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

We need to distinguish the deterministic and non deterministic case.
In the non deterministic case

• The automaton env(MP) for Sω − L(cl(MP)) is constructed
• Apply the subset construction to determinizeMP;
• Add a new trap state qtrap, which will be the only accepting state;
• Replace every undefined transition with a transition into qtrap.

• Live(MP) is obtained by the union ofMP and env(MP).

34

Live(MP): non deterministic

Lemma

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

Since env(MP) specifies Sω − L(cl(MP)) by capturing all undefined
transitions in cl(MP), the proof is trivial by closure properties for
non deterministic Büchi Automaton.

35

Live(MP)

Theorem

Live(MP) specifies a liveness property.

The proof is trivial in the deterministic case, since all undefined
transition are replaced by a transition into qtrap by construction.

Theorem: recall

A reduced Büchi AutomatonMP specifies a liveness property
if and only if

L(cl(MP)) = Sω

36

Live(MP)

Theorem

Live(MP) specifies a liveness property.

In the non deterministic case, from the previous lemma we have that

L(Live(MP)) = L(MP) ∪ (Sω − L(cl(MP)))

L(cl(Live(MP))) = L(cl(MP)) ∪ L(cl(env(MP)))

L(cl(Live(MP))) ⊇ L(cl(MP)) ∪ L(env(MP))

L(cl(Live(MP))) ⊇ L(cl(MP)) ∪ (Sω − L(cl(MP)))

L(cl(Live(MP))) ⊇ Sω

L(cl(Live(MP))) = Sω

37

L(MP)

Theorem

Given a reduced Büchi AutomatonMP

L(MP) = L(Safe(MP)) ∩ L(Live(MP))

Proof:

L(Live(MP)) ∩ L(Safe(MP))

(L(MP) ∪ (Sω − L(cl(MP)))) ∩ L(cl(MP))

(L(MP) ∩ L(cl(MP))) ∪ ((Sω − L(cl(MP))) ∩ L(cl(MP)))

(L(MP) ∩ L(cl(MP))) ∪∅)

L(MP)

38

Example: MTotal Correctness

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

True

39

Example: Safe(MTotal Correctness)

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

True

40

Example: L(Safe(MTotal Correctness)) = L(MPartial Correctness)

q0 q1

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post

Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

True

41

Example: Live(MTotal Correctness)

q0 q1

qtrap

q2

q3
Pre ∧ ¬Done

¬Done

Done ∧ Post
Done ∧ Post

Pre ∧ Done ∧ Post
¬Pre

True

Pre ∧ Done ∧ ¬Post Done ∧ ¬Post ¬Done ∧ ¬Post

42

Example: L(Live(MTotal Correctness)) = L(MTermination)

q0 q1 qtrapPre ∧ ¬Done Done

¬Pre ∨ Done

¬Done

43

Program Verification for deterministic properties

To verify whether π |= P, it needs to be proven that every possible
history of π is accepted by the automatonM(P,π).
In order to do so, we will specify proof obligations using Hoare’s
logic, which specifies triples of the form {Pre}action{Post}, where

• Pre is the set of preconditions;
• action is the code fragment that must terminate;
• Post is the set of postconditions.

44

Correspondence invariant

Correspondence invariant

Let qi be an automaton state and s be a program state.
A correspondence invariant Ci for qi is a predicate such that
s |= Ci if and only if there exists a history of π containing s,
andM(P,π) enters qi upon reading s.

Correspondence invariants are needed to maintain the consistency
between program states and automaton states. A correspondence
invariant Ci is defined for each automaton state qi.

45

Reject knot and Variant function

Reject knot

A reject knot K is a maximal strongly connected subset of
automaton states inM(P,π) with no accepting states.

Variant function

Let qi be an automaton state and s be a program state. Let K
be a reject knot.
A variant function vK(qi, s) is a function from Q×Sπ to a well-
founded set, such as N.

The variant function is used to keep track of the evolution of the
computation.

46

Transition predicate

Transition predicate

A transition predicate Tij for M(P,π) is a predicate that holds
for all program states s ∈ Sπ such that qj ∈ δ(qi, s).

Transition predicates are used in proof obligations to track the
possible computations of the automaton.

47

Proof obligations

Correspondence Basis

∀j : qj ∈ Q(Initπ ∧ T0j =⇒ Cj)

Correspondence Induction

∀α ∈ Aπ ∀i : qi ∈ Q({Ci}α{
∧
j:qj∈Q

(Tij =⇒ Cj)})

They impose the correctness of the correspondence invariants.

48

Proof obligations

Transition Basis

Initπ =⇒
∨
j:qj∈Q

T0j

Transition Induction

∀α ∈ Aπ ∀i : qi ∈ Q({Ci}α{
∨
j:qj∈Q

Tij})

Enforce the safety part ofMP as they force the automaton to avoid
undefined transition.

49

Proof obligations

Knot Exit

∀K ∀i : qi ∈ K(vK(qi) = 0 =⇒ ¬Ci)

Knot Variance

∀K ∀α ∈ Aπ ∀qi ∈ K

({Ci ∧ (0 < vK(qi) = V)}α{
∧

j:qj∈K

((Tij ∧ Cj) =⇒ (vK(qj) < V))})

Enforce the liveness part ofMP as they impose the termination of π
in possible infinite loops with no accepting states.

50

Obligations for Safety

When dealing with safety properties:

• Safe(MP) doesn’t have any reject knots: obligations Knot Exit
and Knot Variance are trivially satisfied;

• For every safety property L(MP) = L(Safe(MP)): proving
π |= Safe(MP) is sufficient to prove that π |= MP.

Proof obligations Correspondence Basis, Correspondence Induction,
Transition Basis and Transition Induction needs to be checked, and
they involve an invariance argument.

51

Obligations for Liveness

When dealing with liveness properties:

• For any liveness property, the corresponding automaton cannot
take any undefined transition, since L(cl(MP)) = Sω :
obligations Transition Basis and Transition induction are trivially
satisfied.

Proof obligations Correspondence Basis, Correspondence Induction,
Knot Exit and Knot Variance needs to be checked, and they involve
both an invariance argument and a well-foundedness argument.

52

	Introduction
	Safety
	Liveness
	Partitioning Properties
	Program verification for deterministic properties

